Black Holes, Lasers and Data Analysis: Contributions to Gravitational Wave Searches with the ExcessPower Pipeline

Sydney J. Chamberlin

Abstract


Gravitational waves (GWs) are tiny perturbations to the spacetime structure of the universe that propagate freely as wavelike solutions to the Einstein equations. The direct detection of GWs is currently a major goal in experimental physics, and a number of large scale efforts to detect them are currently underway.


Keywords


LIGO, laser interferometry, gravitational waves

Full Text:

PDF

References


A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gursel, S. Kawamura, et al., Science 256, 325 (1992).

http://dx.doi.org/10.1126/science.256.5055.325

W. G. Anderson, P. R. Brady, J. D. Creighton, and E. E. Flanagan, Phys. Rev. D 63, 042003 (2001), arXiv:gr-qc/0008066.

http://dx.doi.org/10.1103/PhysRevD.63.042003

P. Brady, D. Brown, K. Cannon, and S. Ray-Majumder, Excess Power, https://dcc.ligo.org/LIGO-T1200125 (2007), lIGO Document T1200125.

J. D. E. Creighton and W. G. Anderson, Gravitational-wave Physics and Astronomy (Wiley-VCH, 2011).

http://dx.doi.org/10.1002/9783527636037

C. Pankow, ExcessPower: A Status Report, https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=97802 (2012), lIGO Document G1201140-v1.




DOI: https://doi.org/10.17307/wsc.v1i1.102

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.