Changes in Climate, Forest Phenology, and Forest Disturbances Around Western Lake Superior

Authors

DOI:

https://doi.org/10.17307/wsc.v1i1.191

Keywords:

Forest Phenology, Regional Climatology, Great Lakes, Climate Change

Abstract

This work proceeds from two hypotheses. First, we can explain much of the observed seasonal and year-to-year variability in forest phenology using weather and climate observations. Seasonal forest phenology is driven by the progress of the warm season: it is observed that frost events can stop spring growth and that seasonal droughts can degrade forest health. What we don’t quite know yet is how strong the roles of climate change and weather variability are in these processes. Second, linking anomalies in observed phenology (by remote sensing methods) with climatological analyses can indicate the occurrence, extent, and possible causes of forest disturbances. We pursue two primary interests here: (1) observations of regional climatology and its variability in the area around western Lake Superior, and (2) identifying the influence of climate variability on forest phenology and disturbances in that area.

Author Biography

Matthew Garcia, University of Wisconsin–Madison

Ph.D Candidate

Graduate Research Assistant

Department of Forest & Wildlife Ecology

University of Wisconsin–Madison

Madison, WI, USA

References

Akkala, A., V. Devabhaktuni, and A. Kumar, 2010: Interpolation techniques and associated software for environmental data. Environ. Prog. Sust. Energy, 29, 134-141, doi: 10.1002/ep.10455.

Alexander, L.V., and 23 coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, paper no. D05109, doi: 10.1029/2005JD006290.

Ali, A.A., and 11 coauthors, 2015: Global-scale environmental control of plant photosynthetic capacity. Ecol. Appl., 25, 2349-2365, doi: 10.1890/14-2111.1.

Anderegg, W.R.L., J.M. Kane, and L.D.L. Anderegg, 2012: Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Clim. Ch., 3, 30-36, doi: 10.1038/nclimate1635.

Anderegg, W.R.L., L. Plavcová, L.D.L. Anderegg, U.G Hacke, J.A. Berry, and C.B. Field, 2013: Drought's legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob. Ch. Biol., 19, 1188-1196. doi: 10.1111/gcb.12100.

Augspurger, C.K., 2009: Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecol., 23, 1031-1039, doi: 10.1111/j.1365-2435.2009.01587.x.

Austin, J.A., and S.M. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, paper no. L06604, doi: 10.1029/2006GL029021.

Austin, J., and S. Colman, 2008: A century of temperature variability in Lake Superior. Limnol. Oceanogr., 53, 2724-2730, doi: 10.4319/lo.2008.53.6.2724.

Baskerville, G.L., and P. Emin, 1969: Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 50, 514-517, doi: 10.2307/1933912.

Bockheim, J.G., and S.A. Schliemann, 2014: Soil richness and endemism across an environmental transition zone in Wisconsin, USA. Catena, 113, 86-94, doi: 10.1016/j.catena.2013.09.011.

Brzostek, E.R., D. Dragoni, H.P. Schmid, A.F. Rahman, D. Sims, C.A. Wayson, D. Johnson, and R.P. Phillips, 2014: Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Change Biol., 20, 2531-2539, doi: 10.1111/gcb.12528.

Cannell, M.G.R., and R.I. Smith, 1983: Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol., 20, 951-963, doi: 10.2307/2403139.

Changnon Jr., S.A., and D.M.A. Jones, 1972: Review of the influences of the Great Lakes on weather. Wat. Resour. Res., 8, 360-371, doi: 10.1029/WR008i002p00360.

Curtis, J.T., and R.P. McIntosh, 1951: An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32, 476-496, doi: 10.2307/1931725.

Danz, N.P., L.E. Frelich, P.B. Reich, and G.J. Niemi, 2013: Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci., 24, 1129-1140, doi: 10.1111/jvs.12028.

d’Orgeville, M., W.R. Peltier, A.R. Erler, and J. Gula, 2014: Climate change impacts on Great Lakes basin precipitation extremes. J. Geophys. Res. Atmos., 119, 10,799-10,812, doi: 10.1002/2014JD021855.

Durre, I., M.J. Menne, B.E. Gleason, T.G. Houston, and R.S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 1615-1633, doi: 10.1175/2010JAMC2375.1.

Duveneck, M.J., R.M. Scheller, M.A. White, S.D. Handler, and C. Ravenscroft, 2014: Climate change effects on northern Great Lake (USA) forests: A case for preserving diversity. Ecosphere, 5, article no. 23, doi: 10.1890/ES13-00370.1.

Filewood, B. and S.C. Thomas, 2014: Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Glob. Change Biol., 20, 360-371, doi: 10.1111/gcb.12354.

Fisher, J.I., A.D. Richardson, and J.F. Mustard, 2007: Phenology model from surface meteorology does not capture satellite-based greenup estimations. Glob. Change Biol., 13, 707-721, doi: 10.1111/j.1365-2486.2006.01311.x.

Foster, J.R., P.A. Townsend, and D.J. Mladenoff, 2013: Mapping asynchrony between gypsy moth egg-hatch and forest leaf-out: Putting the phenological window hypothesis in a spatial context. Forest Ecol. Manage., 287, 67-76, doi: 10.1016/j.foreco.2012.09.006.

Frich, P., L.V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A.M.G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193-212, doi: 10.3354/cr019193.

Groffman, P.M., and 20 coauthors, 2012: Long-term integrated studies show complex and surprising effects of climate change in the northern hardwood forest. BioScience, 62, 1056-1066, doi: 10.1525/bio.2012.62.12.7.

Groisman, P.Y., R.W. Knight, and T.R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 47-66, doi: 10.1175/JHM-D-11-039.1.

Gunderson, C.A., N.T. Edwards, A.V. Walker, K.H. O'Hara, C.M. Campion, and P.J. Hanson, 2012: Forest phenology and a warmer climate—growing season extension in relation to climatic provenance. Glob. Change Biol., 18, 2008-2025, doi: 10.1111/j.1365-2486.2011.02632.x.

Hayhoe, K., J. VanDorn, T. Croley II, N. Schlegal, and D. Wuebbles, 2010: Regional climate change projections for Chicago and the US Great Lakes. J. Great Lakes Res., 36 (Suppl. 2), 7-21, doi: 10.1016/j.jglr.2010.03.012.

Hinkel, K.M., and F.E. Nelson, 2012: Spatial and temporal aspects of the lake effect on the southern shore of Lake Superior. Theor. Appl. Climatol., 109, 415-428, doi: 10.1007/s00704-012-0585-2.

Homer, C.G., J.A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N.D. Herold, J.D. Wickham, and K. Megown, 2015: Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogram. Eng. Rem. Sens., 81, 345-354.

Hufkens, K., M.A. Friedl, T.F. Keenan, O. Sonnentag, A. Bailey, J. O'Keefe, and A.D. Richardson, 2012: Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol., 18, 2365-2377, doi: 10.1111/j.1365-2486.2012.02712.x.

Hunter, A.F., and M.J. Lechowicz, 1992: Predicting the timing of budburst in temperate trees. J. Appl. Ecol., 29, 597-604, doi: 10.2307/2404467.

Irland, L.C., D. Adams, R. Alig, C.J. Betz, C.-C. Chen, M. Hutchins, B.A. McCarl, K. Skog, and B.L. Sohngen, 2001: Assessing socioeconomic impacts of climate change on US forests, wood-product markets, and forest recreation. BioScience, 51, 753-764, doi: 10.1641/0006-3568(2001)051[0753:asiocc]2.0.co;2.

Isaacson, B.N., S.P. Serbin, and P.A. Townsend, 2012: Detection of relative differences in phenology of forest species using Landsat and MODIS. Landscape Ecol., 27, 529-543, doi:10.1007/s10980-012-9703-x.

Jeong, S.-J., C.-H. Ho, H.-J. Gim, and M.E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol., 17, 2385-2399, doi: 10.1111/j.1365-2486.2011.02397.x.

Jin, S., and S.A. Sader, 2005: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, v. 94, pp. 364-372, doi: 10.1016/j.rse.2004.10.012.

Jolly, W.M., R. Nemani, and S.W. Running, 2005: A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob. Change Biol., 11, 619-632, doi: 10.1111/j.1365-2486.2005.00930.x.

Kim, Y., J.S. Kimball, K. Didan, and G.M. Henebry, 2014: Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Ag. Forest Meteor., 194, 132-143, doi: 10.1016/j.agrformet.2014.04.001.

Koster, R.D., G.K. Walker, G.J. Collatz, and P.E. Thornton, 2014: Hydroclimatic controls on the means and variability of vegetation phenology and carbon uptake. J. Climate, 27, 5632-5652, doi: 10.1175/JCLI-D-13-00477.1.

Kunkel, K.E., D.R. Easterling, K. Hubbard, and K. Redmond, 2004: Temporal variations in frost-free season in the United States: 1895-2000. Geophys. Res. Lett., 31, paper no. L03201, doi: 10.1029/2003GL018624.

Li, X., S. Zhong, X. Bian, W.E. Heilman, Y. Luo, and W. Dong, 2010: Hydroclimate and variability in the Great Lakes region as derived from the North American Regional Reanalysis, J. Geophys. Res. Atmos., 115, paper no. D12104, doi: 10.1029/2009JD012756.

Marchin, R., H. Zeng, and W. Hoffmann, 2010: Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia, 163, 845-854, doi: 10.1007/s00442-010-1614-4.

Marchin, R. M., C.F. Salk, W.A. Hoffmann, and R.R. Dunn, 2015: Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Glob. Change Biol., 21, 3138–3151, doi: 10.1111/gcb.12919.

Masek, J.G., C.Q. Huang, R. Wolfe, W. Cohen, F. Hall, J. Kutler, and P. Nelson, 2008: North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, v. 112, pp. 2914-2926, doi: 10.1016/j.rse.2008.02.010.

McCabe, G.J., J.L. Betancourt, and S. Feng, 2015: Variability in the start, end, and length of frost-free periods across the conterminous United States during the past century. Int. J. Climatol., doi: 10.1002/joc.4315.

Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897-910, doi: 10.1175/JTECH-D-11-00103.1.

Munné-Bosch, S., and L. Alegre, 2004: Die and let live: Leaf senescence contributes to plant survival under drought stress. Functional Plant Biol., 31, 203-216, doi: 10.1071/FP03236.

Murray, M.B., M.G.R. Cannell, and R.I. Smith, 1989: Date of budburst of fifteen tree species in Britain following climatic warming. J. Appl. Ecol., 26, 693-700, doi: 10.2307/2404093.

Peñuelas, J., T. Rutishauser, and I. Filella, 2009: Phenology feedbacks on climate change. Science, 324, 887-888, doi: 10.1126/science.1173004.

Pope, K.S., V. Dose, D. Da Silva, P.H. Brown, C.A. Leslie, and T.M. DeJong, 2013: Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Glob. Change Biol., 19, 1518-1525, doi: 10.1111/gcb.12130.

Reyer, C.P.O., and 20 coauthors, 2013: A plant's perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Change Biol., 19, 75-89, doi: 10.1111/gcb.12023.

Richardson, A.D., T.F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey, 2013: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Ag. Forest Meteor., 169, 156-173, doi: 10.1016/j.agrformet.2012.09.012.

Roberts, A.M.I., C. Tansey, R.J. Smithers, and A.B. Phillimore, 2015: Predicting a change in the order of spring phenology in temperate forests. Glob. Change Biol., 21, 2603-2611, doi: 10.1111/gcb.12896.

Schwartz, M.D., R. Ahas, and A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol., 12, 343-351, doi: 10.1111/j.1365-2486.2005.01097.x.

Scott, R.W., and F.A. Huff, 1996: Impacts of the Great Lakes on regional climate conditions. J. Great Lakes Res., 22, 845-863, doi: 10.1016/S0380-1330(96)71006-7.

Sousounis, P.J., and E.K. Grover, 2002: Potential future weather patterns over the Great Lakes region. J. Great Lakes Res., 28, 496-520, doi: 10.1016/S0380-1330(02)70602-3.

Teskey, R.O., B.C. Bongarten, B.M. Cregg, P.M. Dougherty, and T.C. Hennessey, 1987: Physiology and genetics of tree growth response to moisture and temperature stress: An examination of the characteristics of loblolly pine (Pinus taeda L.). Tree Physiol., 3, 41-61, doi: 10.1093/treephys/3.1.41.

Thompson, A.J., and S.M. Moncrieff, 1982: Prediction of bud burst in Douglas fir by degree-day accumulation. Can. J. Forest Res., 12, 448-452, doi: 10.1139/x82-069.

Van Cleave, K., J.D. Lenters, J. Wang, and E.M. Verhamme, 2014: A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997-1998. Limnol. Oceanogr., 59, 1889-1898, doi: 10.4319/lo.2014.59.6.1889.

Viherä-Aarnio, A., S. Soutinen, J. Partanen, and R. Häkkinen, 2014: Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiol., 24, 547-556, doi: 10.1093/treephys/tpu038.

Xie, Y., K.F. Ahmed, J.M. Allen, A.M. Wilson, and J.A. Silander Jr., 2015: Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landscape Ecol., 30, 109-123, doi: 10.1007/s10980-014-0099-7.

Yu, L., S. Zhong, X. Bian, W.E. Heilman, and J.A. Andresen, 2014: Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States. Int. J. Climatol., 34, 3499-3514, doi: 10.1002/joc.3923.

Zhu, Z., and C.E. Woodcock, 2012: Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, v. 118, pp. 83-94, doi: 10.1016/j.rse.2011.10.028.

Downloads

Published

2017-01-17

How to Cite

Garcia, M. (2017). Changes in Climate, Forest Phenology, and Forest Disturbances Around Western Lake Superior. Proceedings of the Wisconsin Space Conference, 1(1). https://doi.org/10.17307/wsc.v1i1.191

Issue

Section

Biosciences & Geosciences